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ABSTRACT

In this paper, we attain some new upper bounds of the left hand side of the Hermite-
Hadamard type inequalities for m-convex functions. Some applications to special means of
positive real numbers are given.
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1. INTRODUCTION

The following inequality is well known in the literature as the
Hermite-Hadamard inequalities:

a+b)_ 1 f(a)+ f(b)
f(TJSELf(x)dxs#, (1)

where f:lcR—R is a convex function on the subinterval | of real
numbers and g,be | with a<b. For several recent results, generalization
concerning Hermite-Hadamard inequalities. Throughout of this paper we

consider a real interval 1 =R and with | we denote the interior of I.
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In Toader (1984) defined the concept of m-convexity as the
following:
Definition 1.1

A function f :[0,b] >R, b>0, is said to be m-convex, where me[0,1],
if forall x,y €[0,b] and t €[0,1], we have

f (tx+m(l-t)y) <tf (X) + m(@-t) f (y).

In Mihesan (1993) defined the class of (a,m) -convex functions as the
following:

Definition 1.2
A function f:[0,b] >R , b>0, is said to be (a,m) -convex, where
(a,m) [0,1]?, if for any x,y e[0,b] and t €[0,1], we have

f(tx+m@-t)y) <t“f(x)+m@L-t*) f(y).

It is obvious that if o =1, then (&, m) -convex means m-convex. For recent
results and generalizations concerning m-convex and (a,m) -convex
functions, see the references therein.

Definition 1.3

A function f:I1 c[0,0)—[0,2), is said to be s-convex on I, if the
inequality f(ax+py)<a’f(x)+p°f(y) holds for all x,yel and
a, B €[0,1] with « + =1 and for some fixed s € (0,1].

Alomari et al. (2010) discussed the following results to the left hand side of
the Hermite-Hadamard inequalities for s-convex functions:

Theorem 1.4

[Alomari et al. (2011), Theorem 2.2]. Let f:1c[0,0) >R be a

differentiable mapping on |~ such that f’eL'[a,b], where a,bel with
a<b. If | f'] is s-convex on [a,b], for some fixed s e (0,1], then the
following inequality holds
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f(ﬂj—i " £ (X)dx
2 b—a-a

b-a

Sm{l f'@)]+| f'(b)|+2(s+12)

] e

C DO ¢y 4 £ o)) ®

L
C A(s+1)(s+2)
Theorem 1.5

[Alomari et al. (2011), Theorem 2.3] Let f:l1c[0,0) >R be a
differentiable mapping on |~ such that f’eL['[a,b], where a,bel with
a<b. If | f'|P®*Y (p>1) is s-convex on [a,b], for some fixed s € (0,1],

then the following inequality holds
e 2
< b-a) 1 |r( 1 “
4 p+1) (s+1

‘f(a—”’j-bi " (x)dx
[((21-5 +s+1)| f'(@) " +27° | £'(b) |q)§ @)

2 —a-a

+((21'S +S+1)| f'(b)|* +2"° | f'(a) lq)ﬂ
Theorem 1.6

[Alomari et al. (2011), Theorem 2.4] Let f:l1c[0,0) >R be a
differentiable mapping on |~ such that f’e L'[a,b], where a,bel with
a<b. If | f'|°,(q>2) is s-convex on [a,b], for some fixeds e (0,1], then

the following inequality holds
1
< (b - a) 2 T
8 (s+D(s+2)

a+b 1 b
HTJ_EL f (x)dx
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@+ @2 b)) e

| o) 250 Fr @) [ }3} (5)

Dragomir and Agarwal (1998) established the following result connected
with the right hand side of (1):

Theorem 1.7

[Dragomir and Agarwal (1998), Theorem 2.2] Let f:lcR—>R be a

differentiable mapping on | where a,bel with a<b. If | f'| is convex
on [a,b], then the following inequality holds

f@+f) 1
2 b

- [t

Sb%a(' t'@)+| t(b)]). (6)

In Bakula et al. (2008), Dragomir (1993) and Eftekhari (2012) have been
discussed results related to the right hand side of inequalities in (1), for m-
convex functions. In this paper we establish some new inequalities for the
left hand side of (1), for m-convex functions.

2. NEW INEQUALITIES FOR m-CONVEX FUNCTIONS
In order to prove our main results we need an auxiliary lemma.

Lemma 2.1
Let f:[a,b] >R be a differentiable function on (a,b), where a,beR
with a<b. If f’eL[a,b], then the following equality holds

a+b

1 b
f (T) T j f (x)dx 7

b-al g [1+t 11—t 1 (1+t, 1-t
=TDO(1—t)f (7a+7bjdt—jo(1—t)f (Tb+7ajdt}
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Proof.
It suffices to note that by integrating by parts we have

1 1+t 1-t
|1=j0(1—t)f (TaJrTbjdt

1
:2(1—t)f(1+ta+1—tbj L2 Jlf(1+ta+1_tbjdt
b-a 2 2 ), a—-b 2 2
_ 2 f(a+bj+ 2 Ilf(1+ta+l_tb]dt.
a-b 2 a—bJo 2 2

Setting x=1%ta+1%tb and dx=a—;bdt, which gives

2 a+b PR
I, = f - 2 f(x)dx.
' b-a ( 2 j (a—b)zj‘a (el

Similarly, we have

1 (14t 1t
|2 :J.O(l_t)f (Tb+7ajdt

-2 a+b & b
= f - asp T (X)dX.
( 2 j ( b zleb (X) X

Therefore,

ba | _gfatb)__1
T(Il_lz)_f[ 2 j b_aLf(x)dX,

which is required.

Remark 2.2

The above lemma is the same as Lemma 2.1 in Alomari et al. (2010), but for
the left hand side of (1).
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The following theorems provide new upper bounds for the left hand
side of (1) for m-convex functions.

Theorem 2.3

Let f:1 >R, |c[0,©) be a differentiable function on | such that

f'e '[a,b], where a,bel and a<b. If | f'| is m-convex on [a,b] for
some fixed me (0,1] then the following inequality holds

‘f(aij praloais"5) o
a1l

{| f(a)|+| f'(b)|+%{

Proof.
By Lemma 2.1, we have

a+b 1 b b-
f(Tj—ELf(x)dx s[ Z

1+t 1-t 1+t 1-t
j (1- t)‘ Tbj‘dt j 1- t)‘ Taj

a]x 9)

dt}
Since | f'| is m-convex on [a,b], then for any t<[0,1], we have

(1+t 1-t 1+t 1-t b
Hz‘”z j @ ( j‘f(ﬂ‘ (0

and similarly,
2 2 m
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Therefore, the inequalities (9), (10) and (11) imply

L)

(H j(|f'(a)|+|f'(b)|)+m@ ‘f(%)

2

) b—aj_lf'(a)|+|f'(b)|+m f-(ij+ f-(ﬂj
4 )| 3 61 \m m

(5252l f'(b)|+%( (2]
L m

f(a—”’J—L " f (x)dx
2 b-a-a

Which completes the proof.

Remark 2.4

If in Theorem 2.3, one choose m=1, thatis, | f'| is convex on [a,b],
then we have

‘f(a—”’)—bi "t (x)dx < 22

STQf'(a)|+| f'(0)]),

2 —a%

which is as the same as (6), but for the left hand side of (1).

Theorem 2.5
Suppose that all the assumptions of Theorem 2.3 are satisfied. Then the

following inequality holds
‘f (ibj—i " £ (x)dx f '(a—”’jH.(lz)
a 2m

+2m
2 b-a

_b-a[| f@]+|f ®)
12 2
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Proof.
Since | f'| is m-convex on [a,b] and 1Lta 1;t a+(1- t)—
1Ltb Ta tb+(1— t)a +b , then for any te[01], we have
f '[ﬂa+1ibj <t| f'(@@)|+m(-1) f(a—”’)
2 2 2m
and
f [1;% 12t j<t|f'(b)|+m(1—t) f(az—;bj

Therefore, by Lemma 2.1, we have

a+b 1 b-a
(55l roomt <252
[ (5]
0 2m
_b—anKmer(M|+gnf(g¢9j
4| 6 3 2m

:b—a|f<mruf(M|+mn (gigj}

12 2m
which is (12).
Theorem 2.6
Let f:1 >R, 1 <[0,0) be a differentiable function on | such that

f'e Ll[a,b], where a,bel and a<b. If | f'|* is m-convex on [a,b] for
some fixed me (0,1] and q>1 then the following inequalities hold
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‘f(a_m]_b_ £ (x)dx

—a

55 o 2 pror b )]
:[b%a]@f |f‘(a)|+|f'(b)|+(gj;[f'(%)+‘f'(%)‘] . (13
Proof.

Since | f'|* is m-convex on [a,b], we have

‘f (1+ta 1_tqu (1+tj|f(a)|q (1 tj
2 2 2

q

(%)

(14

and

1et, 1-t_ | _(1+t 0 (1-t ’
‘f(zb 2) ( )|f(b)|+m(2jf(aj‘. (15)

Using inequalities (14), (15) and well known Holder’s inequality for

p:i1 and g>1, we have

1+t
{ @a- t)‘ —a+7bj‘dt}

a aleflt 1t
_j(l ) (1 t) [2 a+= bj‘dt

q-

(j - t)dt) {j - t)‘ 1+t L;tb)thJq
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1

1Va | o @-t?) RN
S(EJ j{ [ F @ +m=—— f(aj jdt}
: 1 (16)
Ve (1, . ml (b
=[5j HECTRRAL (a) ] ,

and similarly

1+t e (1,0 m
j(l t)‘ —b+T j‘dt<(2j (glf(b)| +—

o

6

{5

q J
Now using inequality (9), we get

a+b 1 ¢
‘f (Tj_ﬁj f (x)dx
1

{521 fror-2

Using the fact that

{5

o [ Cm
}+[|f(b)| |t

Zn:(ai +b,)" < Zn:a{ +Zn:bi' (17)

for 0<r<1, a,a,,...,a,=0and b,b,,...,b, >0, we obtain (13).

Theorem 2.7

Suppose that all the assumptions of Theorem 2.6 are satisfied. Then the
following inequalities hold
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1

a+b 1 b-a)(2)a

(55l roond<(25%) 3] -
{ |f(a)|q (a+qu}q+[|f'(b)|q el
2m 2

g_g,(_j @I+ O,
8 3 2&

S

We proceed as in the proof of Theorem 2.6, but instead of inequalities
(14) and (15), we use the following inequalities:

and

q q
f'(l%taJrl%tbj <t|f (@) +m(1-t) f(a—”’j ,

f(l“b 12t qut|f'(b)|“ +m(1—t)f‘(a—+bj

So inequalities (9), (16), (17), (18) and (19) imply

L3

a+b
‘f(Tj——j f (x)dx| <

[ﬁ%a—ouxww

+[ j:[t(lm f(b)[* +m(L—t)?
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222y e, |
8 3 2
{I For, f(a;bJ ]
2m
S(b_—a)(zj @I+ T O, pna
8 3 oa

Q-

&)

Q-

f,(a+bj
2m

which completes the proof.

Theorem 2.8
Suppose that all the assumptions of Theorem 2.6 are satisfied. Then the

following inequalities hold
-1
S(b—aj 49 -4 y
16 )l 29-1

1
9 1q

m
(I

m m

Using inequalities (14), (15) and (17) and well known Hoélder’s inequality

for p:i and gq>1, we have

a+b 1 o
(5L oo
m

() oo

16 )\ 2q-1

a

+[3| f'(b) " +m

[3| f'@)]* +m

+

Proof.
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[la- t)‘ 1ia tbj‘dt
f'(liaJrl;tb)q
2 4T
1 (1+ q 1-t (b
B (5 rer 5 r(7)

Q-

dt (20)

s(j:(l—t)"dt)'l’ [

g-1
J[a-i)e
2q-1

=

q-1 et
(4=t} m '3 q
_EZq—lj (|f()|‘*+ - J
s(—q_qu(lj (3q|f(a)|+ me f'(ﬂn
2q-1 4 m
and similarly
(1+t, 1-t

f [ij qT | 1)
m
. [q_—lj (1 [33 ) e (EJD

2q-1 4 m

Thus the combination of (9), (20) and (21) imply desired inequalities.

If in Theorem 2.8, we use (9), (17), (18), (19) and (20), then we get
the following theorem.

Theorem 2.9

Suppose that all the assumptions of Theorem 2.6 are satisfied. Then the
following inequalities hold
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a+b 1 b b-a 2q—2%1
(55l oef <[P 55) <2

1 1
0 g aq
@f'(a)r* +m f(a—erJ ] +[|f‘(b)|q +mlf a—”’] }
2m 2m
b T ! b ]
—a\)29-2)¢ . a-+
| fr @)+ f'o)[)+2m|f| 22 1.
(252) 2] {u @1+ 1O+ 2mt |1 (0]
Remark 2.10
Since we have
q-1
g-1)¢
a=2 " 9 1 0).
EEV

We can get new upper bounds in the previous theorems.

3. APPLICATIONS TO SPECIAL MEANS

Now by using the results of Section 2, we give some applications to
special means of positive real numbers.

(1) The arithmetic mean: A(a,b) :aTer’ a,beR, ab>0.

(2) The logarithmic mean: L(a,b)=I b-a ,a,beR, axb, a,b>0.

nb-Ina

(3) The generalized logarithmic mean:

bn+1 _ an+1

m} . neM(-10}, abe[0x) azb

Ln (a,b) =|:

The following propositions hold.
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Proposition 3.1

Let ne(—o0,0)U[L,)\{-1} and [a,b] < (0,0). Then we have the following
inequality

n n b_a n-1 |n-1 n-1
A (a,b)—l_n(a,b)|Sn(?j[A(a ") +2A™(a,b) |.
Proof.
The assertion follows from Theorem 2.5 for f(x)=x" and n as specified
above and m=1.
Proposition 3.2
Let ne(—0,0)U[Lx)\{-1} and [a,b]c(0,0) and q>1. Then we have
the following inequality:

1
b-a

A"(a,b) - L} (a,b)| < n(Tj@]q {zq A@™,b™) + A" (a,b) |

Proof.

The assertion follows from Theorem 2.7 for f(x)=x" and n as specified
and m=1.

Proposition 3.3
Let g>1 and [a,b] < (0,). Then we have the following inequality

A (ab) - L*(a,b)| < (b;s‘j(%jq (3 +1)A@?,b ).

Proof.

The assertion follows from Theorem 2.8 for f (x) = 1 and m=1.
X
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4. CONCLUSION

If in Theorem 2.5, we put m=1, then inequalities (2) and (3) for
s=1 follow and for m=1 in Theorem 2.8, inequality (4) is the same as
inequality (4) for s=1. Also, in Theorem 2.6, if we set m=1, then
inequality (5) for s=1 follows. In Eftekhari (2012) obtained some upper
bound to the left hand side of (1) for («,m) -convex functions, if we set

a =1, then the results of this paper attain.
Theorems 2.6 - 2.9 imply the following remark.

Remark 4.1
From Theorems 2.6 - 2.9, we have

f(a—”’j ! f(x)dx
2 b-a

<min{E, E,,E; E,},

)

1

b-a 2% , . m\a
El:(T (gj |f(a)|+|f(b)|+(5J (

J’_

J|

@I O o

1
¢ ,[a+bj |
2q 2m

|
(m) :3;(' f'@+1 f' b))+ m‘l*(
(

wlnN
N—

q-1

EJ(’ (1 f@)]+] f(b)[)+2m
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