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ABSTRACT 

In this paper, we attain some new upper bounds of the left hand side of the Hermite-

Hadamard type inequalities for m-convex functions. Some applications to special means of 

positive real numbers are given. 
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1. INTRODUCTION 

  The following inequality is well known in the literature as the 

Hermite-Hadamard inequalities: 

 

                      ,
2

)()(
)(

1

2

bfaf
dxxf

ab

ba
f

b

a













 
                        (1) 

 

where :f I   is a convex function on the subinterval I of real 

numbers and Iba ,  with .ba   For several recent results, generalization 

concerning Hermite-Hadamard inequalities. Throughout of this paper we 

consider a real interval I  and with  


I  we denote the interior of  I. 
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             In Toader (1984) defined the concept of m-convexity as the 

following: 

 

Definition 1.1   

A function ],0[: bf , ,0b  is said to be m-convex, where ],1,0[m  

if for all ],0[, byx   and ]1,0[t , we have 

 

                          ).()1()())1(( yftmxtfytmtxf   

 

In Mihesan (1993) defined the class of ( , )m -convex functions as the 

following: 

 

Definition 1.2  

 A function :[0, ]f b  , 0,b   is said to be ( , )m -convex, where  

,]1,0[),( 2m  if for any , [0, ]x y b  and ]1,0[t , we have 

 

                          ( (1 ) ) ( ) (1 ) ( ).f tx m t y t f x m t f y       

 

It is obvious that if 1 , then ( , )m -convex means m-convex. For  recent 

results and generalizations concerning m-convex and ( , )m -convex 

functions, see the  references therein. 

 

Definition 1.3   

A function : [0, ) [0, ),f I      is said to be s-convex on I, if the 

inequality ( ) ( ) ( )s sf x y f x f y       holds for all ,x y I  and 

, [0,1]    with 1    and for some fixed ].1,0(s  

 

Alomari et al. (2010) discussed the following results to the left hand side of 

the Hermite-Hadamard inequalities for  s-convex functions: 

 

Theorem 1.4 

[Alomari et al. (2011), Theorem 2.2]. Let : [0, )f I     be a 

differentiable mapping on 
I  such that ],,[1 baLf   where Iba ,  with 

.ba   If || f   is s-convex on ],,[ ba for some fixed ]1,0(s , then the 

following inequality holds 
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Theorem 1.5 

[Alomari et al. (2011), Theorem 2.3] Let  ),0[: If  be a 

differentiable mapping on 
I  such that ],,[1 baLf   where Iba ,  with 

.ba   If )1(,|| )1(   pf pp
 is s-convex on ],,[ ba for some fixed ]1,0(s , 

then the following inequality holds  
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Theorem 1.6 

[Alomari et al. (2011), Theorem 2.4] Let  ),0[: If  be a 

differentiable mapping on 
I  such that ],,[1 baLf   where Iba ,  with  

.ba   If )1(,||  qf q
 is s-convex on ],,[ ba for some fixed ]1,0(s , then 

the following inequality holds 
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Dragomir  and  Agarwal (1998) established the following result connected 

with the right hand side of (1): 

 

Theorem 1.7  

 [Dragomir and Agarwal (1998), Theorem 2.2] Let :f I   be a 

differentiable mapping on 


I where Iba ,  with .ba   If || f   is convex 

on [ , ],a b  then the following inequality holds 
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In Bakula et al. (2008), Dragomir (1993) and Eftekhari (2012) have been 

discussed results related to the right hand side of  inequalities  in (1),  for  m-

convex  functions. In this paper we establish some new inequalities for the 

left hand side of (1), for  m-convex functions. 

 

2. NEW INEQUALITIES FOR m-CONVEX FUNCTIONS 

In order to prove our main results we need an auxiliary lemma. 

 

Lemma 2.1  

Let :[ , ]f a b   be a differentiable function on ),,( ba  where ba,  

with .ba   If  ],,[1 baLf   then the following equality holds 
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Proof. 

It suffices to note that by integrating by parts we have  
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Similarly, we have 

 

1

2
0

1 1
(1 )

2 2

t t
I t f b a dt

  
   
 

  

 

 
2

2

2
( ) .

2

b

a b

a b
f f x dx

b a a b




  
  

   
  

Therefore,  

 

              
1 2

1
( ) ( ) ,

4 2

b

a

b a a b
I I f f x dx

b a

  
   

 
  

 

which is required. 

 

Remark   2.2  

The above lemma is the same as Lemma 2.1 in Alomari et al. (2010), but for 

the left hand side of (1).  
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The  following  theorems provide  new  upper  bounds  for  the  left  hand 

side  of  (1)  for  m-convex  functions. 

 

 Theorem 2.3   

 Let :f I  ,  [0, )I    be a differentiable  function on  


I such that  

],[' 1 baLf  , where  Iba ,  and .ba   If  |'| f  is m-convex on ],[ ba  for  

some  fixed  ]1,0(m  then the following inequality holds 
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 Proof. 

 By   Lemma  2.1,  we  have   

 








 










 
 4

)(
1

2

ab
dxxf

ab

ba
f

b

a
                                       (9) 

 
















 











 



 

1

0

1

0
.

2

1

2

1
')1(

2

1

2

1
')1( dta

t
b

t
ftdtb

t
a

t
ft  

 

Since  |'| f  is  m-convex on  ],[ ba , then  for  any  ]1,0[t , we  have 
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and  similarly, 
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Therefore, the  inequalities  (9), (10) and (11) imply 
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Which  completes  the  proof. 

 

Remark  2.4   

If  in  Theorem  2.3,  one  choose  1m , that is, |'| f  is convex  on ],[ ba , 

then   we  have 
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which  is  as  the  same  as (6), but  for  the  left  hand  side of  (1). 

 

Theorem  2.5   

Suppose that all the assumptions of Theorem 2.3 are satisfied. Then the 

following inequality holds 
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Proof. 

Since |'| f  is m-convex on  [ , ]a b   and   ,
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which   is  (12). 

 

Theorem  2.6   

Let :f I  , [0, )I    be a differentiable  function on  


I such that  

],[' 1 baLf  , where  Iba ,  and .ba   If  
qf |'|  is m-convex on [ , ]a b  for  

some  fixed  (0,1]m  and 1q   then the following inequalities  hold 
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Proof. 

Since  
qf |'|  is m-convex on [ , ]a b ,  we  have      
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for 10  r ,  0,,, 21 naaa  and  0,,, 21 nbbb  , we  obtain (13). 

 

Theorem   2.7   

Suppose that all the assumptions of Theorem 2.6 are satisfied. Then the 

following inequalities hold 
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Proof. 

We proceed as  in the  proof  of  Theorem 2.6, but  instead  of inequalities  

(14)  and  (15),  we  use  the  following  inequalities: 
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which  completes  the  proof. 

 

Theorem   2.8   

Suppose that all  the  assumptions of  Theorem  2.6 are satisfied. Then the 

following inequalities hold 
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Proof. 

Using inequalities (14), (15) and (17) and well known Hölder’s  inequality 

for 
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  and   1q  ,  we  have 
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Thus the combination of (9), (20) and (21) imply desired inequalities. 

 

If in Theorem 2.8, we use (9), (17), (18), (19) and (20), then we get 

the following theorem. 

 

Theorem   2.9   

Suppose that all the assumptions of Theorem 2.6 are satisfied. Then the  

following  inequalities  hold  
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Remark  2.10  
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We  can  get  new  upper  bounds  in  the  previous  theorems. 

  

 

3. APPLICATIONS TO SPECIAL MEANS 

 Now by using the results of Section 2, we give some applications to  

special means of positive real numbers. 
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Proposition  3.1  

Let  ( ,0) [1, ) \ 1n     and [ , ] (0, ).a b   Then we have the following 

inequality 
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The assertion follows from Theorem 2.5 for ( ) nf x x  and  n   as specified 
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Proposition  3.2  

Let  ( ,0) [1, ) \ 1n     and  [ , ] (0, )a b    and 1.q   Then we have 
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Proof. 

The assertion follows from Theorem 2.7 for ( ) nf x x  and n  as specified 
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4. CONCLUSION 

If in Theorem 2.5, we put 1m , then inequalities (2) and (3) for 

1s  follow and for 1m  in Theorem 2.8, inequality (4)  is the same as 

inequality (4) for 1s . Also, in Theorem 2.6, if we set 1m , then 

inequality (5) for 1s follows. In Eftekhari (2012) obtained some upper 

bound to the left hand side of (1) for ( , )m -convex functions, if we set 

1  , then the results of this paper attain.  

 

Theorems 2.6 - 2.9 imply the following remark. 

 

Remark  4.1 

From  Theorems 2.6 - 2.9,  we  have 
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